TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

COURSE DESCRIPTION AND RATIONALE: The students in this course will study Numerical analysi with the following main topics:

- Error Analysis and precision values
- Solutions of Non-Linear equations
- Numerical Integrations
- Numerical Differentiation

1. Teaching Institution	Ministry of Higher Education and Scientific Research
2. University Department/Centre	Al-Nahrain University/Computer Science
3. Course title/code	Applied Numerical Methods
4. Programme(s) to which it contributes	Bsc
5. Modes of Attendance offered	Two hours Theoretical Each Week
6. Semester/Year	First Semester/ 2022-2023
7. Number of hours tuition (total)	2 Hours in each 15 weeks
8. Date of production/revision of this specification	16/10/2022
9. Aims of the Course	

- The course introduces the fundamentals of applied numerical methods, which is essential background for other courses, such as information security.
- There is a practical sessions in this course, however, tutorial sessions will be held to gain some practice of solving mathematical problems and related applications.

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

Completion this course will outcomes a student to be able to solve problems, which have discrete items, linear and non-linear equations-differentiation and integration.

B. Subject-specific skills

a) Math I.

b) Math II.

Teaching and Learning Methods

10. TEACHING METHODS

Lectures : 15 Weeks, Two Theoretical Hours for Each week with two hour practical for each Week

Assessment methods

1. ASSESSMENT METHODS and ASSESSMENT DETAILS will be shown in the following table

	Test	Date	Mark	Learning Outcome	
1	Test I	Week 6	15 %	1,2	
2	Quiz I	?	3 %	3	
3	Test II	Week 12	15 %	3,4	
4	Quiz II	?	3 %	4	
5	Attendance	All	4 %	-	
6	Final Exam	Week 17-18	60 %	1,2,3,4	
	Total	Marks	100 %		

C. Thinking Skills

C1.- Understanding discrete problems.

C2.- solving mathematical problems and related applications.

D. General and Transferable Skills (other skills relevant to employability and personal development)
 D1. Mathematics
 D2. Probability

Assessment Method	Teaching Method	Unit/Module or Topic Title	Hours	Week
	Power Point slides with Tut.	Introduction to numerical methods	2	1
Quiz	Power Point slides with Tut.	 Solution of Equations with single Variable by Iterations Fixed Point Method Newton- Raphson Method 	2	2
	Power Point slides with Tut.	Solution of Equations with single Variable by Iterations Bisectional Method	2	3
Test	Power Point slides with Tut.	Numerical Integration Trapezoidal Rule Simpson's Rule	2	4
	Power Point slides with Tut.	Applications of Numerical Integration	2	5
Mid Exam.1	Power Point slides with Tut.	System of Linear Equations Gauss-Seidal Method Jaccobi Method	2	6
	Power Point slides with Tut.	Some Applications for Systems having linear Equations	2	7
Quize	Power Point slides with Tut.	First Order Differential Equation Euler Method Runge-Kutta Method	2	8
	Power Point slides with Tut.	Applications for First Order Differential Equation	2	9
	Power Point slides with Tut.	Numerical Differentiation Difference Formula Two-Point Evaluation	2	10
	Power Point slides with Tut.	Applications of Numerical Differentiation	2	11
Mid Exam 2.	Power Point slides with Tut.	Numerical Solution of Nonlinear system	2	12

Power Point slides with Tut.	Examples of Numerical Solution for Nonlinear systems	2	13
Power Point slides with Tut.	The accuracy of calculation and percentage error in numerical methods	2	14
Power Point slides with Tut.	Implementation of numerical methods with fixed resolution arithmetic	2	15

 12. Infrastructure Required reading: CORE TEXTS COURSE MATERIALS OTHER 	Text book: Numerical analysis for scientists and engineers Author :Joe Hoffman Edition & Year public : 2004
Special requirements (include example workshops, periodic IT software, websites)	
Community-based facilities (include for example, guest Lectures , internship , field studies)	
. Admissions	a)Compulsory prerequisites: Math I, Math II

Pre-requisites	a)Compulsory prerequisites: Math I, Math IIb) Recommended prerequisites : Discrete Mathematics
Minimum number of students	25
Maximum number of students	30